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Abstract

In this paper, we consider the numerical solution of the time fractional diffusion equation.
Essentially, the time fractional diffusion equation differs from the standard diffusion equation
in the time derivative term. In the former case, the first-order time derivative is replaced by
a fractional derivative, making the problem global in time. We propose a spectral method in
both temporal and spatial discretizations for this equation. The convergence of the method
is proven by providing a priori error estimate. Numerical tests are carried out to confirm the
theoretical results. Thanks to the spectral accuracy in both space and time of the proposed
method, the storage requirement due to the “global time dependence” can be considerably
relaxed, and therefore calculation of the long-time solution becomes possible.
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1 Introduction

Fractional partial differential equations (FPDEs) appear in the investigation of transport dy-
namics in complex systems which are governed by the anomalous diffusion and non-exponential
relaxation patterns [21]. Related equations of importance are the space/time fractional diffusion
equations, the fractional advection-diffusion equation [11, 12] for anomalous diffusion with sources
and sinks, and the fractional Fokker-Planck equation [3] for anomalous diffusion in an external
field, etc.

The time fractional diffusion equation (TFDE) considered in this paper is of interest not only
in its own right, but also in that it constitutes the principal part in solving many other FPDEs
(see next section for more details). This model equation governs the evolution for the probability
density function that describes anomalously diffusing particles. Anomalous diffusion deviates
from the standard Fichean description of Brownian motion, the main character of which is that
its mean squared displacement is a non-linear growth with respect to time, such as: 〈x2(t)〉 ∼ tα.
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The TFDE describes the anomalous sub-diffusion corresponding to 0 < α < 1. Examples for
sub-diffusive transport include turbulent flow, chaotic dynamics charge transport in amorphous
semiconductors [28, 29], NMR diffusometry in disordered materials [22], and dynamics of a bead
in polymer network [1]. In [23], Nigmatullin used the fractional diffusion equation to describe
diffusion in media with fractal geometry. Mainardi [20] pointed out that the propagation of
mechanical diffusive wave in viscoelastic media can be modeled by TFDE.

The theoretical justification for this equation, together with the confirmation of physical and
biological experiments have led to an intensive investigation in recent years to design efficient
numerical schemes. On one side, because of the integral in the definition of the non-integer order
derivatives, it is apparent that these derivatives are non-local operators, which explains one of
their most significant uses in applications: The non-integer derivatives possess a memory effect
which it shares with several materials such as viscoelastic materials or polymers. On the other
side, the feature of the fractional derivatives makes the design of accurate and fast methods
difficult. Unlike the integer derivatives, which are local in the sense that the derivative of a
function at a certain point in space or time depends only on the function in the vicinity of this
point, presence of the integral in the non-integer order derivatives makes the problem global. In
the TFDE, this means that the solution at a time tk depends on the solutions at all previous time
levels t < tk. The fact that all previous solutions have to be saved to compute the solution at the
current time level would make the storage very expensive if a low-order method is employed.

The TFDE as well as the fractional wave equation have been investigated in analytical and
numerical frames by a number of authors [9, 17, 30, 39]. Some of these authors have tried to
construct analytical solutions. For example, Schneider and Wyss [30] and Wyss [39] considered the
time fractional diffusion-wave equations. The corresponding Green functions and their properties
are obtained in terms of Fox functions. Gorenflo et al. [9, 10] used the similarity method and
the method of Laplace transform to obtain the scale-invariant solution of TFDE in terms of
the wright function. However the work done on the numerical solution of the TFDE is relatively
sparse. Liu et al. [18] employed the finite difference method in both space and time, and analyzed
the stability condition. Sun and Wu [32] proposed a finite difference scheme for the fractional
diffusion-wave equation. Langlands and Henry [14] considered the implicit numerical scheme for
fractional diffusion equation in which the backward Euler approximation is used to discretize the
first order time derivative and the L1 scheme is used to approximate the fractional order time
derivative. Lin and Xu [15] proposed a finite difference scheme in time and Legendre spectral
method in space for TFDE. A convergence rate of (2−α)-order in time and spectral accuracy in
space of the method was rigourously proved. It is worthwhile noting that some of FPDEs, e.g.,
the time fractional wave equations, may be written in the form of integro-differential equations,
for which there has been some work (see, for example, [13, 19, 27, 37] and the references therein).

However all above mentioned papers dealt with the time discretization by finite difference
methods. As we have known, any algorithm using a finite difference discretization of a fractional
derivative has to take into account its non-local structure, which means a high storage require-
ment. Some techniques for handling this problem have been developed, e.g., by Ford and Simpson
[7] and Diethelm and Freed [5], which was based on the so-called “fixed memory principle”. By
choosing a storage length T depending on the mesh size h, i.e., T = O(h−p/α), schemes of order
hp can be constructed.
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Our main motivation in this paper is to construct a spectral approximation in both space and
time to the FPDEs considered. Since the time fractional derivative uses the global information,
it is very natural to consider a global method, such as the spectral method. It is known that
the spectral method has been an efficient tool for computing numerical solutions of differential
equations because of its high-order accuracy. The use of the spectral method in the time dis-
cretization of FPDEs may significantly reduce the storage requirement because, as compared to
low order methods, much fewer time levels are needed to compute a smooth solution.

Generally speaking, the spectral method is employed for the spatial discretization. Compared
to the spectral method in space, spectral method in time is relatively rare for several reasons:
firstly, for parabolic problems the time derivative is of first order, this makes the construction of
efficient spectral methods quite troublesome; secondly, the spectral method is global, that is, the
computation of the solution at an instant requires information about the solution at all other time
levels. Nevertheless, there exists some work on the development of space-time spectral methods
for integer-order PDEs [2, 8, 31, 33, 34, 35, 36, 38]. For parabolic problems, the time derivative is
of first order, most existing time spectral methods were constructed based on the Petrov-Galerkin
or Dual-Petrov-Galerkin formulation.

However, for FPDEs, the situation is quite different. As we will see in the paper, the fractional
differential operator of order α, with 0 < α < 1, possesses some features of elliptic operators, as
long as suitable spaces and norms are chosen. This makes us possible to use the standard Galerkin
formulation. The main goal of this paper is to construct appropriate space-time spectral methods
for FPDEs. Our main contribution is that we find suitable spaces and norms in which the time
fractional differential problem can be formulated into an elliptic problem. Thanks to these spaces,
the space-time spectral approximation can follow the Galerkin method for elliptic problems, and
the optimal error estimate is then derived by using standard analysis techniques. We also give
the implementation details which can be crucial for the efficiency of the method.

The outline of this paper is as follows. In next section we introduce some notations and
construct the weak formulation both in space and time directions for the time-fractional diffusion
equation. The well-posedness of the problem is established. In section 3 we propose the space-
time Galerkin spectral method and carry out the error analysis. In section 4, we give some
implementation details and present the numerical results to support the theoretical prediction.
In section 5, we give some concluding remarks. An appendix is given in the final section.

2 Problem and weak formulation

Let Λ = (−1, 1), I = (0, T ), be space and time domain respectively. We denote Ω := Λ× I. The
TFDE we consider in this paper reads:

0∂
α
t u(x, t)− ∂2

xu(x, t) = f(x, t) ∀(x, t) ∈ Ω, (2.1)

subject to the following initial and boundary conditions:

u(x, 0) = 0 ∀x ∈ Λ, (2.2)

u(−1, t) = u(1, t) = 0 ∀t ∈ I. (2.3)
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In the investigation of boundary value problems for TFDEs, there usually exist two ways to
express the operator 0∂

α
t : Caputo and Riemann-Liouville definitions.

In the Caputo definition, the fractional derivative of order α, denoted by C
0∂α

t u(x, t), is defined
as:

C
0∂α

t u(x, t) =
1

Γ(1− α)

∫ t

0

∂u(x, τ)
∂τ

dτ

(t− τ)α
, 0 < α < 1, (2.4)

where Γ(·) denotes Gamma function.

On the other side, the Riemann-Liouville definition, R
0 ∂α

t , reads:

R
0 ∂α

t u(x, t) =
1

Γ(1− α)
∂

∂t

∫ t

0

u(x, τ)
(t− τ)α

dτ, 0 < α < 1. (2.5)

The two definitions are linked by the following relationship, which can be verified by a direct
calculation:

R
0 ∂α

t u(x, t) =
u(x, 0)

Γ(1− α)tα
+ C

0∂
α

t u(x, t). (2.6)

Many authors think that the Caputo’s version is more natural because it allows the handling
of inhomogeneous initial conditions in a easier way. Nevertheless we will consider the Riemann-
Liouville definition throughout this paper in order to simplify our discussion since most useful
tools have been established by using the Riemann-Liouville definition. It is worthwhile to note,
by virtue of (2.6), that for the homogeneous condition considered here the Riemann-Liouville
definition coincides with the Caputo version.

Note that the TFDE (2.1) can also take the form as follows [14]:

∂tu(x, t)− 0∂
1−α
t ∂2

xu(x, t) = 0∂
1−α
t f(x, t) ∀(x, t) ∈ Ω. (2.7)

Here, we use the form (2.1) rather than (2.7) for the reason that the former facilitates the
construction of our space-time spectral method. It should be emphasized that the method to be
presented hereafter for (2.1) can be directly applied to the TFDE of form (2.7) through a simple
partial integration transformation.

We are also aware that some of the FPDEs can be reformulated into a general form of integro-
differential equations:

∂tu(x, t) +
∫ t

0
K(t− s)Au(x, s)ds = f(x, t) ∀(x, t) ∈ Ω.

For example, the fractional wave equation

∂2
t u(x, t)− 0∂

1−α
t ∂2

xu(x, t) = f(x, t) ∀(x, t) ∈ Ω (2.8)

corresponds to

Au = −∂2
xu, K(s) =

sα−1

Γ(α)
.
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The Riemann-Liouville form of (2.8) is similar to (2.1) but with 1 < α < 2. We will not address
this equation in the present paper, and leave this as a future work.

The TFDE (2.7) has been derived from continuous time random walks. The physical interpre-
tation of the fractional derivative is that it represents a degree of memory in the diffusing material
[10]. This equation is of interest not only in its own right, but also in that it represents the heart in
many other important FPDEs. We mention, among other, the fractional Nernst-Planck equation
describing the flux of ions through a diffusive membrane [3]:

∂tCk = 0∂
1−α
t Dk,α[4Ck +∇ · ( Ck

kBT
zke∇Vm)],

where Ck, Dk,α, and zk are respectively the concentration, modified diffusion coefficient, and
valence of the kth ionic species. e is the unit charge of an electron and kB is Boltzmann’s
constant. T is the temperature. Vm is the membrane potential. The method presented below
can be easily generalized to the fractional Nernst-Planck equation.

Now we turn to the model problem (2.1)-(2.3). For 0 < α < 1, the definition of the fractional
derivative uses the information of the standard derivatives at all previous time levels. This makes
the properties of the TFDE different from the well known parabolic equations. However, we will
see that, with the help of suitable inner products and norms, the TFDE can be considered as an
elliptic problem in the corresponding Sobolev spaces.

In order to derive the variational formulation of problem (2.1)-(2.3) and prove its well-
posedness, we need some preparation.

2.1 Preparation

First, we introduce some notations and define some functional spaces endowed with norms and
inner products that are used hereafter. Let c be a generic positive constant independent of any
functions and of any discretization parameters. We use the expression A . B to mean that
A 6 cB, and use the expression A ∼= B to mean that A . B . A . Let O be a domain which may
stand for I, Λ, Ω or R. L2(O) is the space of measurable functions whose square are Lebesgue
integrable in O. The inner product and norm of L2(O) are defined by:

(u, v)O =
∫

O
uvdO , ‖u‖0,O = (u, u)

1
2
O ∀u, v ∈ L2(O).

We also use Hm(O) and Hm
0 (O) to denote the usual Sobolev spaces, whose norms are denoted

by ‖ · ‖m,O.

Particularly, we will need to recall the definitions of some Sobolev spaces: for real s > 0, let

Hs(R) = {v(t)|v ∈ L2(R); (1 + |ω|2) s
2F(v)(ω) ∈ L2(R)},

endowed with the norm:

‖v‖s,R = ‖(1 + |ω|2) s
2F(v)(ω)‖0,R,

where F(v) denotes the Fourier transform of v. For bounded domain I, we define space:

Hs(I) = {v ∈ L2(I)|∃ ṽ ∈ Hs(R) such that ṽ|I = v},
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with the norm:

‖v‖s,I = inf
ṽ∈Hs(R),ṽ|I=v

‖ṽ‖s,R.

Let C∞
0 (I) stand for the space of smooth functions with compact support in I, and Hs

0(I) denote
the closure of C∞

0 (I) with respect to norm ‖ · ‖s,I . We also define the space

0C
∞(I) = {v|v ∈ C∞(I) with compact support in (0, 1]}.

The space 0H
s(I) denotes the closure of 0C

∞(I) with respect to norm ‖ · ‖s,I . For the Sobolev
space X with norm ‖ · ‖X , let

Hs(I;X) := {v| ‖v(·, t)‖X ∈ Hs(I)}, s > 0,

0H
s(I;X) := {v| ‖v(·, t)‖X ∈ 0H

s(I)}, s > 0,

endowed with the norm:

‖v‖Hs(I;X) := ‖‖v(·, t)‖X‖s,I .

When X stands for Hσ(Λ) or Hσ
0 (Λ), σ > 0, the norm of the space Hs(I;X) will be denoted by

‖ · ‖σ,s,Ω.

We define space:

Bs(Ω) := 0H
s(I, L2(Λ)) ∩ L2(I, H1

0 (Λ))

equipped with the norm:

‖v‖Bs(Ω) :=
(
‖v‖2

Hs(I,L2(Λ)) + ‖v‖2
L2(I,H1

0 (Λ))

)1/2
.

It can be verified that Bs(Ω) is a Banach space.

Hereafter, in cases where no confusion would arise, the domain symbols Λ, I, or Ω may be
dropped from the notations.

We will also need to recall some definitions of fractional derivatives and related properties
[24].

For real number s > 0, let n be the integer, such that n − 1 6 s < n. The left and right
Riemann-Liouville derivatives of order s are respectively defined as:

left Riemann-Liouville derivative: 0D
s
t v(t) =

1
Γ(n− s)

dn

dtn

∫ t

0

v(τ)dτ

(t− τ)s−n+1
∀t ∈ [0, T ],

right Riemann-Liouville derivative : tD
s
T v(t) =

(−1)n

Γ(n− s)
dn

dtn

∫ T

t

v(τ)dτ

(τ − t)s−n+1
∀t ∈ [0, T ],

where dn

dtn stands for the usual derivative of integer order n.
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Let’s remark that if function v(t) has n order continuous derivative in [0, T ], then as s tends
to n or n − 1, the left Riemann-Liouville derivative becomes a conventional n or n − 1 order
derivative of function v(t). In fact, a straightforward calculation shows

lim
s→n

0D
s
t v(t) = lim

s→n

dn

dtn

(
1

Γ(n− s)

∫ t

0
(t− τ)n−s−1v(τ)dτ

)

=
dn

dtn
0D

0
t v(t) = v(n)(t),

lim
s→n−1

0D
s
t v(t) = lim

s→n−1

dn

dtn

(
1

Γ(n− s)

∫ t

0
(t− τ)n−s−1v(τ)dτ

)

=
dn

dtn

∫ t

0
v(τ)dτ = v(n−1)(t).

For readers convenience, we list below a number of useful properties related to the Riemann-
Liouville fractional derivative.

Property 2.1. [24] If 0 < p < 1, 0 < q < 1, v(0) = 0, t > 0, then

0D
p+q
t v(t) = 0D

p
t 0D

q
t v(t) = 0D

q
t 0D

p
t v(t).

Property 2.2. [24] (Fourier transform) For all real s, v ∈ C∞
0 (R), let F denote Fourier

transform operator, then

F(−∞Ds
t v(t)) = (iω)sF(v)(ω),

F(tD
s
+∞v(t)) = (−iω)sF(v)(ω).

One of the remarkable properties of the Riemann-Liouville fractional derivative is given in
the following lemma. Note that the same identity with a slightly different condition can be found
in [26]. Here, thanks to the modified condition given below we are able to prove the result in a
simpler way.

Lemma 2.1. For real s, 0 < s < 1, if w(t) ∈ Hs(I), v(t) ∈ C∞
0 (I), then

(0Ds
t w(t), v(t))I = (w(t), tD

s
T v(t))I . (2.9)

Proof. By using integration by parts, we get

d
dτ

∫ T

τ

v(t)
(t− τ)s

dt =
d
dτ

[
v(t)(t− τ)1−s

1− s

∣∣∣∣
T

τ

− 1
1− s

∫ T

τ
v′(t)(t− τ)1−s dt

]

=
d
dτ

[
v(T )(T − τ)1−s

1− s

]
− 1

1− s

d
dτ

∫ T

τ
v′(t)(t− τ)1−s dt

=
∫ T

τ

v′(t)
(t− τ)s

dt, (2.10)
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Employing again integration by parts, we obtain

(0Ds
t w(t), v(t))I =

1
Γ(1− s)

∫ T

0

d
dt

∫ t

0

w(τ)
(t− τ)s

dτ v(t) dt

=
v(t)

Γ(1− s)

∫ t

0

w(τ)
(t− τ)s

dτ

∣∣∣∣
T

0

− 1
Γ(1− s)

∫ T

0

∫ t

0

w(τ)
(t− τ)s

dτ v′(t) dt

= − 1
Γ(1− s)

∫ T

0

∫ t

0

w(τ)
(t− τ)s

dτ v′(t)dt. (2.11)

Furthermore, by using (2.10), the right hand side of (2.11) is reformulated into

− 1
Γ(1− s)

∫ T

0

∫ t

0

w(τ)
(t− τ)s

dτ v′(t) dt

= − 1
Γ(1− s)

∫ T

0

∫ T

τ

v′(t)
(t− τ)s

dt w(τ) dτ

= − 1
Γ(1− s)

∫ T

0

(
d

dτ

∫ T

τ

v(t)
(t− τ)s

dt

)
w(τ)dτ

= (w(τ), τD
s
T v(τ))I . (2.12)

Finally, combining (2.11) and (2.12) gives (2.9).
The proof is completed.

Lemma 2.2. For real s > 0, v ∈ C∞
0 (R), then

(−∞Ds
t v(t), tD

s
∞v(t))R = cos(πs)‖−∞Ds

t v(t)‖2
L2(R), (2.13)

(−∞Ds
t v(t), tD

s
∞v(t))R = cos(πs)‖tD

s
∞v(t)‖2

L2(R). (2.14)

Proof. A proof of the identity (2.13) is given in [6]. The identity (2.14) can be proven by using
(2.13) as follows. For v ∈ C∞

0 (R), let w(t) = v(−t), then w ∈ C∞
0 (R). Applying (2.13) to w leads

to

(−∞Ds
t w(t), tD

s
∞w(t))R = cos(πs)‖−∞Ds

t w(t)‖2
L2(R). (2.15)

On the other hand, a direct calculation shows

−∞Ds
t w(t) =

1
Γ(n− s)

dn

dtn

∫ t

−∞

w(τ)dτ

(t− τ)s−n+1

=
1

Γ(n− s)
dn

dtn

∫ t

−∞

v(−τ)dτ

(t− τ)s−n+1

=
1

Γ(n− s)
dn

dtn

∫ ∞

−t

v(ζ)dζ

(ζ − (−t))s−n+1

y=−t
=

(−1)n

Γ(n− s)
dn

dyn

∫ ∞

y

v(ζ)dζ

(ζ − y)s−n+1

= yD
s
∞v(y). {by definition} (2.16)

Similarly, we have

tD
s
∞w(t)

y=−t
= −∞Ds

yv(y). (2.17)
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Finally, combining (2.16), (2.17) and (2.15) yields

(−∞Ds
yv(y), yD

s
∞v(y))R = cos(πs)‖yD

s
∞v(y)‖2

L2(R).

This proves (2.14).

Remark 2.1. In the particular cases s = k + 1/2 with non-negative integers k, the identities
(2.13) and (2.14) can be proved in a simpler way. In fact, in these cases the right-hand sides
of the both identities are zero for all v ∈ C∞

0 (R). On the other side, by composite formula and
Lemma 2.1, we have

(
−∞D

k+ 1
2

t v(t), tD
k+ 1

2∞ v(t)
)

R
=

(
−∞D

1
2
t Dkv(t), tD

1
2∞Dkv(t)

)

R

=
(
DDkv(t), Dkv(t)

)
R

=
1
2

(
Dkv(t)

)2
∣∣∣∣
∞

−∞
= 0.

This proves (2.13) and (2.14).

Now we aim at establishing a relationship between Riemann-Liouville derivatives and frac-
tional Sobolev spaces on bounded domains. Note that similar relationships between fractional
derivatives and fractional Sobolev spaces have been derived in [6], where the authors first defined
the fractional Sobolev spaces on the whole line and then confined them on bounded intervals.
Here, we choose to define the spaces directly on bounded domains by the Riemann-Liouville frac-
tional derivatives. This will enable us to deduce some useful results for bounded domains more
simply. First we introduce several definitions, which are generalizations of the ones for the whole
line.

Definition 2.1. Let s > 0, we define the semi-norm:

|v|Hs
l (I) := ‖0D

s
t v‖L2(I),

and norm:

‖v‖Hs
l (I) := (‖v‖2

L2(I) + |v|2Hs
l (I))

1
2 .

We then define Hs
l (I) as the closure of C∞

0 (I) with respect to norm ‖ · ‖Hs
l (I).

Definition 2.2. Let s > 0, we define the semi-norm:

|v|Hs
r (I) := ‖tD

s
T v‖L2(I),

and norm:

‖v‖Hs
r (I) := (‖v‖2

L2(I) + |v|2Hs
r (I))

1
2 .

Let Hs
r (I) denote the closure of C∞

0 (I) with respect to norm ‖ · ‖Hs
r (I).
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Definition 2.3. Let s > 0, s 6= n + 1
2 , we define the semi-norm:

|v|Hs
c (I) := |(0Ds

t v, tD
s
T v)L2(I)|

1
2 ,

and norm:

‖v‖Hs
c (I) := (‖v‖2

L2(I) + |v|2Hs
c (I))

1
2 .

Then we define Hs
c (I) as the closure of C∞

0 (I) with respect to norm ‖ · ‖Hs
c (I).

We would like to indicate that if the domain I in the Definitions 2.1-2.3 is replaced by the
whole line R, then the semi-norms of the spaces Hs

l (R),Hs
r (R), and Hs

c (R) should be defined
respectively by

|v|Hs
l (R) := ‖−∞Ds

t v‖L2(R), |v|Hs
r (R) := ‖tD

s
∞v‖L2(R), |v|Hs

c (R) := |(−∞Ds
t v, tD

s
∞v)L2(R)|

1
2 .

For these spaces, thanks to Lemma 2.2, the following equivalence holds.

Lemma 2.3. Let s > 0, s 6= n + 1
2 , the spaces Hs

l (R), Hs
r (R), and Hs

c (R) are equal in the
sense that their seminorms as well as norms are equivalent.

This result is generalized to the bounded interval I in the following lemma.

Lemma 2.4. Let s > 0, s 6= n+ 1
2 , the spaces Hs

l (I), Hs
r (I), and Hs

c (I) are equal in the sense
that their seminorms as well as norms are equivalent.

Proof. It suffices to prove that the three seminorms | · |Hs
l (I), | · |Hs

c (I), and | · |Hs
r (I) are equivalent

in the space C∞
0 (I). For all v in C∞

0 (I), let ṽ be the extension of v by zero outside I. From the
definition of fractional derivative, we know that left (right) Riemann-Liouville derivative at the
time t uses the information earlier (later) than t. This means that

{
−∞Ds

t ṽ = 0 t 6 0

tD
s∞ṽ = 0 t > T.

(2.18)

Thus

supp(−∞Ds
t ṽ tD

s
∞ṽ) ⊂ I,

which implies

|v|Hs
c (I) = |ṽ|Hs

c (R). (2.19)

On the other hand, by Lemma 2.3, using (2.19) and Hölder inequality, we obtain

|v|Hs
l (I) 6 |ṽ|Hs

l (R)
∼= |ṽ|Hs

c (R) = |v|Hs
c (I) . |v|

1
2

Hs
l (I)|v|

1
2

Hs
r (I).

Thus

|v|Hs
l (I) . |v|Hs

r (I).

10



Similarly we can prove

|v|Hs
r (I) . |v|Hs

l (I).

This gives

|v|Hs
r (I)

∼= |v|Hs
l (I)

∼= |v|Hs
c (I).

Lemma 2.5. Let s > 0, s 6= n + 1
2 , the spaces Hs

c (I) and Hs
0(I) are equal with seminorms

and norms.

Proof. Once again, we just need to prove that the seminorms | · |Hs
c (I) and | · |Hs(I) are equivalent

in C∞
0 (I). To this end, for all v ∈ C∞

0 (I), let ṽ be the extension of v by zero outside I. Then in
virtue of equality (2.19), Lemma 2.3, Plancherel theorem, and Property 2.2, we have

|v|Hs
c (I) = |ṽ|Hs

c (R)
∼= |ṽ|Hs

l (R) = ‖F(0Ds
t ṽ)‖0 = ‖(iω)sF(ṽ)‖0

∼= |ṽ|Hs(R)
∼= |v|Hs(I).

It is well known that it holds

Hs
0(I) ⊂ Hq

0(I) if q ≤ s.

Therefore, a direct consequence of Lemmas 2.4 and 2.5 is that the following embeddings hold:

Hs
l (I) ⊂ Hq

l (I), Hs
r (I) ⊂ Hq

r (I), Hs
c (I) ⊂ Hq

c (I) if q ≤ s.

2.2 Variational Formulation

Now we consider the weak formulation of problem (2.1) as follows: for f ∈ L2(Ω), find u ∈ B
α
2 (Ω)

such that
A(u, v) = F(v) ∀v ∈ B

α
2 (Ω), (2.20)

where the bilinear form A(·, ·) is defined by

A(u, v) := (0∂
α
2
t u, t∂

α
2
T v)Ω + (∂xu, ∂xv)Ω,

and the functional F(·) is given by

F(v) := (f, v)Ω .

Formally, the variational formulation (2.20) can be derived from (2.1) by using the following
lemma.

Lemma 2.6. For all 0 < α < 1, if w ∈ 0H
1(I), v ∈ 0H

α
2 (I), then

(0Dα
t w, v)I = (0D

α
2
t w, tD

α
2
T v)I . (2.21)

11



In fact, by multiplying the equation (2.1) with v ∈ B
α
2 (Ω), and integrating the resulting

equation over Ω, we have

(0∂α
t u, v)Ω + (∂2

xu, v)Ω = (f, v)Ω ∀v ∈ B
α
2 (Ω).

Then (2.20) is obtained by employing Lemma 2.6 with respect to t to the first term, and classical
integration by parts with respect to x to the second term.

Reciprocally, if a regular enough function u is the solution of (2.20), we can prove, by following
the standard procedure, that u is also the solution of (2.1) in the distribution sense.

Now we turn to prove Lemma 2.6.

Proof of Lemma 2.6. First, it is known (see [16]) that

Hs
0(I) = Hs(I) = 0H

s(I) if 0 < s <
1
2
. (2.22)

Hence for any 0 < α < 1, v ∈ 0H
α
2 (I) implies v ∈ H

α
2
0 (I), and by the definition of H

α
2
0 (I), there

exists a sequence vn ∈ C∞
0 (I), such that

‖vn − v‖
H

α
2 (I)

→ 0 as n → +∞.

For all w ∈ H1(I) with w(0) = 0, by virtue of Property 2.1 and Lemma 2.1, we have

(0Dα
t w, vn)I = (0D

α
2
t 0D

α
2
t w, vn)I = (0D

α
2
t w, tD

α
2
T vn)I . (2.23)

On one side, it holds

|(0Dα
t w, vn)I − (0Dα

t w, v)I | 6 ‖0D
α
t w‖0‖v − vn‖0 → 0 as n → +∞,

which implies

(0Dα
t w, vn)I → (0Dα

t w, v)I as n → +∞. (2.24)

On the other side, applying Lemmas 2.4 and 2.5 yields

|(0D
α
2
t w, tD

α
2
T vn)I − (0D

α
2
t w, tD

α
2
T v)I |

6 ‖0D
α
2
t w‖0|v − vn|

H
α
2

r (I)
. ‖0D

α
2
t w‖0‖v − vn‖H

α
2 (I)

→ 0 as n → +∞.

This gives

(0D
α
2
t w, tD

α
2
T vn)I → (0D

α
2
t w, tD

α
2
T v)I as n → +∞. (2.25)

Finally, by taking limit on both sides of (2.23) as n → +∞, and using (2.24) and (2.25), we
obtain (2.21). ¤

Theorem 2.1. For all 0 < α < 1 and f ∈ L2(Ω), problem (2.20) is well-posed. Furthermore,
if u is the solution of (2.20), then it holds

‖u‖
B

α
2 (Ω)

. ‖f‖0,Ω. (2.26)
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Proof. The well-posedness of problem (2.20) is guaranteed by the well-known Lax-Milgram lemma.
The continuity of the bilinear form A and the functional F is obvious. We only need to prove
the coercivity of A in the space B

α
2 (Ω). By Lemmas 2.4 and 2.5, we have, for all v ∈ B

α
2 (Ω),

A(v, v) & (0D
α
2
t v, 0D

α
2
t v)Ω + (∂xv, ∂xv)Ω & ‖v‖2

B
α
2 (Ω)

. (2.27)

Thus the well-posedness of problem (2.20) is proved. In order to derive the stability (2.26), we
take v = u in (2.20), then use (2.27) to get

‖u‖2

B
α
2 (Ω)

. (f, u)Ω. (2.28)

The estimate (2.26) is now a direct consequence of (2.28) and the Schwarz inequality and Poincaré
inequality.

Remark 2.2. We emphasize that the solution of the problem (2.20) does not imply the homo-
geneous initial condition imposed upon the strong solution of (2.1) for the reason that there is no
trace at time t = 0 for functions in B

α
2 (Ω) with α

2 < 1
2 . In fact, there is no sense to define values

at a given time of a function in B
α
2 (Ω) with α

2 < 1
2 ; see e.g. (2.22). Thus the equivalence between

the problem under strong formulation (2.1) and the problem under variational formulation (2.20)
should be understood in the following sense: first it is obvious that a solution of (2.1) is also a
solution (unique in the weak sense) of (2.20); inversely, a regular enough solution (in this case,
defining initial values at t = 0 makes sense) is also a solution of (2.1).

3 Spectral Galerkin Method

In this section we propose a spectral Galerkin method to numerically solve the initial boundary
value problem of TFDE expressed in weak form (2.20). Our goal here is first to introduce some
approximation operators and derive the corresponding approximation results, then establish an
error estimate for the numerical solution.

In order to discretize problem (2.20), we define PM (Λ) (resp. PN (I)) as the polynomials
spaces of degree less than or equal to M (resp. N), with respect to x (resp. t). For spectral
approximations in space, we introduce the space:

P 0
M (Λ) := PM (Λ) ∩H1

0 (Λ).

Since the initial value u(x, 0) = 0, it is natural to construct the approximation space (in time):

PE
N (I) := {v ∈ PN (I)|v(0) = 0}.

For a pair of positive integers M , N , let L := (M, N), and

SL := P 0
M (Λ)⊗ PE

N (I).

Our space-time spectral Galerkin approximation to problem (2.20) reads as: find uL ∈ SL,
such that

A(uL, vL) = F(vL) ∀vL ∈ SL. (3.1)

Since SL is a subspace of B
α
2 (Ω), the well-posedness of the Galerkin formulation (3.1) can be

established similarly as in the continuous case (2.20).
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Theorem 3.1. For all 0 < α < 1 and f ∈ L2(Ω), discrete problem (3.1) is well-posed.
Furthermore, if uL is the solution of (3.1), then uL satisfies

‖uL‖B
α
2 (Ω)

. ‖f‖0,Ω. (3.2)

In the purpose of carrying out an error analysis to the spectral Galerkin method, we introduce
two approximation operators as follows. We define the orthogonal projector Π1,0

M : H1
0 (Λ) →

P 0
M (Λ) by: ∀v ∈ H1

0 (Λ),Π1,0
M v ∈ P 0

M (Λ), such that

((Π1,0
M v − v)′, φ′)Λ = 0 ∀φ ∈ P 0

M (Λ).

Then, for all v ∈ Hm(Λ)∩H1
0 (Λ),m > 1, the following optimal error estimates hold (see Theorem

1.7 in [4]):

|Π1,0
M v − v|1,Λ . M1−m‖v‖m,Λ, (3.3)

‖Π1,0
M v − v‖0,Λ . M−m‖v‖m,Λ. (3.4)

We let ΠN denote the classical L2(I) orthogonal projection operator in time. For the projector
ΠN , the error estimate is well known (Theorem 1.2 in [4]):

‖ΠNv − v‖0,I . N−m‖v‖m,I ∀v ∈ Hm(I),m > 0. (3.5)

Now, we construct the projection operator ΠE
N : 0H

1(I) → PE
N (I) by: ∀v ∈ 0H

1(I),

ΠE
Nv :=

∫ t

0
ΠN−1v

′(τ)dτ.

Then we have by (3.5):

|ΠE
Nv − v|1,I = ‖ΠN−1v

′ − v′‖0,I . N1−m‖v‖m,I ∀v ∈ Hm(I) ∩ 0H
1(I),m > 1. (3.6)

An estimate for the L2-error of ΠE
N can be deduced by using Aubin-Nitsche trick, as stated in

the following lemma.

Lemma 3.1. It holds

‖ΠE
Nv − v‖0,I . N−m‖v‖m,I ∀v ∈ Hm(I) ∩ 0H

1(I),m > 1. (3.7)

Proof. First, it is well known that the Poincaré inequality holds in the space 0H
1(I). As a result,

we can use the standard Aubin-Nitche’s trick to obtain:

‖ΠE
Nv − v‖0,I . N−1|ΠE

Nv − v|1,I ∀v ∈ Hm(I) ∩ 0H
1(I),m > 1.

Then combining (3.6) and the above estimate yields (3.7).

For 0 < s < 1, we can derive, by applying the standard space interpolation technique [16],
the Hs-error estimate as follows:

‖ΠE
Nv − v‖s,I . N s−m‖v‖m,I ∀v ∈ Hm(I) ∩ 0H

1(I),m > 1. (3.8)

In the next lemma, we study properties of the composite approximation operator ΠE
NΠ1,0

M .
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Lemma 3.2. Let 0 < s < 1, γ > 1, σ > 1. If v ∈ 0H
s(I;Hσ(Λ)) ∩ Hγ(I;H1

0 (Λ)), then we
have

‖∂x(v −ΠE
NΠ1,0

M v)‖0,0 . M1−σ‖v‖σ,0 + N−γ‖v‖1,γ ,

‖0∂
s
t (v −ΠE

NΠ1,0
M v)‖0,0 . N s−γ‖v‖0,γ + N s−γM−σ‖v‖σ,γ + M−σ‖v‖σ,s.

Proof. Let Id denote identity operator, then by using estimates (3.3), (3.4) and (3.8), we get

‖∂x(v −ΠE
NΠ1,0

M v)‖0,0 . ‖∂x(v −Π1,0
M v)‖0,0 + ‖Π1,0

M v −Π1,0
M ΠE

Nv‖1,0

. M1−σ‖v‖σ,0 + ‖v −ΠE
Nv‖1,0

. M1−σ‖v‖σ,0 + N−γ‖v‖1,γ ,

‖0∂
s
t (v −ΠE

NΠ1,0
M v)‖0,0 . ‖v −ΠE

Nv‖0,s + ‖ΠE
Nv −ΠE

NΠ1,0
M v‖0,s

. N s−γ‖v‖0,γ + ‖(ΠE
N − Id)(v −Π1,0

M v)‖0,s + ‖v −Π1,0
M v‖0,s

. N s−γ‖v‖0,γ + N s−γM−σ‖v‖σ,γ + M−σ‖v‖σ,s.

We are now in a position to derive the error estimate for the solution of the space-time spectral
approximation.

Theorem 3.2. Let 0 < α < 1, γ > 1, σ > 1, and let u, uL be respectively the solutions of
(2.1) and (3.1). If u ∈ 0H

α
2 (I;Hσ(Λ)) ∩Hγ(I;H1

0 (Λ)), then we have

‖u− uL‖B
α
2 (Ω)

.N
α
2
−γ‖u‖0,γ + N

α
2
−γM−σ‖u‖σ,γ + M−σ‖u‖σ, α

2
+ M1−σ‖u‖σ,0 + N−γ‖u‖1,γ .

(3.9)

Proof. In virtue of the standard error estimate for the Galerkin method of elliptic problems, we
have

‖u− uL‖B
α
2 (Ω)

6 inf
vL∈SL

‖u− vL‖B
α
2 (Ω)

.

By taking vL = ΠE
NΠ1,0

M u and employing Lemma 3.2 we obtain immediately the estimate (3.9).

4 Numerical results

4.1 Implementation

We start with some implementation details. In order to make problem (3.1) practical, all the
integrals involved in (3.1) are evaluated by using suitable numerical quadratures. For the reason
that the integrands in the left hand side of (3.1) are polynomials in space, we choose as usual
the Gauss-Lobatto-Legendre (GLL) quadrature to approximate the integrations in the space
direction. On the other hand, the evaluation of the time integrations is more delicate for the
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reason that the definition of the time fractional derivative makes the integrands non polynomial
in time. Thus we will introduce an exact Gauss-Lobatto-Jacobi (GLJ) quadrature to evaluate
the integrations in the time direction.

To this end, we first introduce some notations. Let’s denote by LM the Legendre polynomial
of degree M . The points of the Gauss-Lobatto-Legendre quadrature formula, denoted by xk, are
defined by:

x0 = −1, xM = 1, L
′
M (xk) = 0, k = 1, · · · ,M − 1,

where x0 < x1 < · · · < xM . The associated weights of the Gauss-Lobatto-Legendre quadrature
formula are denoted by ρk, 0 ≤ k ≤ M .

We now consider the space-time spectral method with numerical quadratures as follows: find
uL ∈ SL such that:

(0∂
α
2
t uL, t∂

α
2
T vL)L + (∂xuL, ∂xvL)L = (f, vL)L ∀vL ∈ SL, (4.1)

where (·, ·)L is defined by

(u, v)L =
M∑

k=0

∫ T

0
u(xk, t)v(xk, t)ρkdt, ∀u, v ∈ C0(Ω). (4.2)

It is noted that in (4.1) the integrations in space have been approximated by the GLL quadrature
while in the time direction the integrations remain exact. In the following, we will present a
method to efficiently compute the integrations in time.

First, we need to choose suitable basis. In order for the method to be more efficient, we choose
to use the tensor product basis that combines a 1D basis for P 0

M (Λ) and one for PE
N (I). It is

natural to use the Lagrangian polynomials as basis in space. Let {hi(x) : i = 0, · · · ,M} be the
Lagrangian polynomials associated with GLL points {xi : i = 0, · · · ,M}. That is, hi(x) ∈ PM (Λ),
such that hi(xk) = δik, with δ denoting the Kronecker symbol. Obviously, we have

P 0
M (Λ) = span{hi; i = 1, 2, · · · ,M − 1}.

For 1D basis in time variable, in order to derive an exact numerical quadrature for integrations in
time as we are going to see later, we will need to use different bases to express the trial functions
and test functions. For this purpose, we construct the functions φj(t) and ψn(t) as follows:

φj(t) = J
−α/2,0
j (

2t

T
− 1) + J

−α/2,0
j−1 (

2t

T
− 1), j = 1, 2, · · · , N,

ψn(t) =
n

n− α/2
J0,−α/2

n (
2t

T
− 1) + J

0,−α/2
n−1 (

2t

T
− 1), n = 1, 2, · · · , N,

where Jα,β
k is the Jacobi polynomial of degree k. The choice of the Jacobi weights with the

exponent pairs (−α/2, 0) and (0,−α/2) is motivated by the consideration of efficiently computing
the integral

∫ T
0 0∂

α/2
t φj(t) t∂

α/2
T ψn(t)dt, needed to form the stiffness matrix, see (4.5). As shown

in the appendix, with this choice, the integrand 0∂
α/2
t φj(t) t∂

α/2
T ψn(t) can be transformed to a

polynomial multiplied by a weight function t−α/2(T − t)−α/2, see (A.8). As a consequence, use of
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the standard Gauss-Lobatto rule with Jacobi weights for evaluating
∫ T
0 0∂

α/2
t φj(t) t∂

α/2
T ψn(t)dt

becomes possible.

It can be directly verified that both sets {φj ; j = 1, 2, · · · , N} and {ψn;n = 1, 2, · · · , N} are
linear independent, and moreover

φj(0) = J
−α/2,0
j (−1) + J

−α/2,0
j−1 (−1) = (−1)j + (−1)j−1 = 0,

ψn(0) =
n

n− α/2
J0,−α/2

n (−1) + J
0,−α/2
n−1 (−1)

= (−1)n n

n− α/2
Γ(n− α/2 + 1)
Γ(1− α/2)n!

+ (−1)n−1 Γ(n− α/2)
Γ(1− α/2)(n− 1)!

= 0.

Thus both sets {φj ; j = 1, 2, · · · , N} and {ψn;n = 1, 2, · · · , N} form the space PE
N (I):

PE
N (I) = span{φj ; j = 1, 2, · · · , N},

= span{ψn;n = 1, 2, · · · , N}.

Now we construct the following bases for the space P 0
M (Λ)⊗ PE

N (I):

P 0
M (Λ)⊗ PE

N (I) = span{hi(x)φj(t), i = 1, · · · ,M − 1; j = 1, · · · , N}. (4.3)

P 0
M (Λ)⊗ PE

N (I) = span{hm(x)ψn(t), m = 1, · · · ,M − 1;n = 1, · · · , N}. (4.4)

By expressing uL in the basis (4.3)

uL(x, t) =
M−1∑

i=1

N∑

j=1

uijhi(x)φj(t),

and let the test function vL goes through all basis functions in (4.4), we arrive at the matrix
statement of (4.1):

Au = f , (4.5)

where u = (uij)(M−1)N is the unknown vector, A = (amn,ij)((M−1)N))2 with

amn,ij =
(
hi 0∂

α
2
t φj , hm t∂

α
2
T ψn

)
L

+ (∂xhiφj , ∂xhmψn)L,

and f = (fmn)(M−1)N with

fmn = (f, hmψn)L.

By definition (4.2), amn,ij can be rewritten into:

amn,ij =
M∑

k=0

hi(xk)hm(xk)ρk

∫ T

0
0∂

α
2
t φj(t) t∂

α
2
T ψn(t)dt +

M∑

k=0

h′i(xk)h′m(xk)ρk

∫ T

0
φj(t)ψn(t)dt

= δimρm

∫ T

0
0∂

α
2
t φj(t) t∂

α
2
T ψn(t)dt +

M∑

k=0

DkiDkmρk

∫ T

0
φj(t)ψn(t)dt, (4.6)
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where Dij = h′j(xi), and D := (Dij) is the usual derivative matrix in space.
Similarly, we have

fmn =
M∑

k=0

∫ T

0
f(xk, t)hm(xk)ψn(t)ρkdt = ρm

∫ T

0
f(xm, t)ψn(t)dt. (4.7)

Note that (4.5) is a non-symmetric positive definite system, we use Bi-CG [25] to solve it.

It remains, however, to compute the integrals involved in (4.6) and (4.7). The presence of the
time fractional derivatives makes the computations non trivial. We will present in the appendix
a method to efficiently calculate the integrations in time.

4.2 Numerical results

In this subsection, we present numerical results obtained by the proposed space-time spectral
method. Estimate (3.9) indicates that the convergence of numerical solutions is exponential if
the exact solution is smooth. To confirm the theoretical prediction, a numerical experiment is
carried out by considering the problem with the exact analytical solution:

u(x, t) = sin πt sinπx.

The main purpose is to check the convergence behavior of numerical solutions with respect to the
polynomial degrees M and N for several α. In figures 1-4, we plot the L2- errors and H1-errors
in semi-log scale. The first computational investigation is concerned with the spatial errors. In
this first test, we fix N = 16, a value large enough such that the time discretization errors are
negligible as compared with the space errors. In figure 1, we plot the errors as functions of the
polynomial degrees M for α = 0.9. As expected, the errors show an exponential decay, since in
this semi-log representation one observes that the error variations are essentially linear versus the
degrees of polynomial.

Now we investigate the temporal errors, which is more interesting to us because of the frac-
tional derivative in time. For a similar reason mentioned above, we fix a large enough value of M ,
say M = 15, and let N vary. In figures 2-4 we plot the errors as functions of N for three values
α = 0.1, 0.5, 0.99. It is observed that the error curves are all straight lines. This indicates that
the convergence in time of the space-time spectral method is exponential. An another interesting
finding of the numerical tests is that the proposed method seems work well too for α close to 1,
even though our theoretical analysis breaks down in the case α = 1.

As for all other spectral methods, the accuracy of the present space-time spectral method
depends on the regularity of the solution. In this example, we take an exact solution with limited
regularity to examine the sharpness of the estimate given in (3.9). To this end, we consider the
following exact solution

u(x, t) = t(t− 1/2)γ sinπx,

where γ is a constant. It can be verified that this solution belongs to Hγ+1/2 on the time variable
if γ is not an integer. We plot in figure 5 the error decay rates in the Bα/2-norm with respect to
the polynomial degrees N with M = 15 and two different values of α : 0.5, 0.8 for γ = 16/3. The
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N−5 and N−6 decay rates are also shown for comparison reason. It is observed that the error
curves are straight lines in this log-log representation, which indicates the algebraic convergence
for the solution of limited regularity. Moreover it is seen that the errors decay with rates between
N−5 and N−6. This seems quite reasonable regarding the estimate (3.9), which predicts N−5.58

decay rate for α = 0.5 and N−5.43 decay rate for α = 0.8.

The investigation of the convergence behavior for less regular solutions can be done by de-
creasing γ. We plot in figure 6 the errors versus N with M = 15 for three different values of
γ : 16/3, 8/3, 2/3. It is shown that the convergence rate slows down as γ, i.e., the regularity of the
solution, decreases. These tests are in perfect agreement with what was expected for a spectral
method.

5 Concluding remarks

We have presented a space-time spectral method for the time fractional diffusion equation. We
established the well-posedness of this method by introducing a well-suited variational formulation.
The spectral accuracy of the method is proven by providing a priori error estimate, and confirmed
by a series of numerical tests. Thanks to the high accuracy of the proposed method, the storage
requirement due to the time memory effect can be considerably reduced. It is worthwhile to
mention that our numerical experiments show that the proposed method works also for α = 1,
for which the TFDE becomes the standard diffusion equation. In this case our method differs
from (and simpler than) the existing space-time spectral methods which are based on the Petrov-
Galerkin or Dual-Petrov-Galerkin formulation.

In a future work, we plan to investigate the computational complexity of the method, and look
for ways to efficiently reduce the cost needed to compute the term involving the time fractional
derivative. Other further work includes applying the present method to more general fractional
PDEs.

A Appendix

Here we present a numerical quadrature for fast evaluations of the integrals
∫ T

0
0∂

α
2
t φj(t) t∂

α
2
T ψn(t)dt,

∫ T

0
φj(t) ψn(t)dt,

∫ T

0
f(xm, t)ψn(t)dt

involved in (4.6) and (4.7).

First, in order to compute the integral
∫ T

0
0∂

α
2
t φj(t) t∂

α
2
T ψn(t)dt,

we have to compute the left Riemann-Liouville derivative of φj(t) and right Riemann-Liouville
derivative of ψn(t). To this end, we recall here a known result from [24] (Theorem 6.4):
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Theorem A.1. If 0 < ν < 1, γ is an arbitrary real number, r and k are integer numbers
such that r > −1 + γ − ν/2, k > −1− γ − ν/2, then for −1 < t < 1 it holds

∫ 1

−1

(
sign(t− τ) +

tan(πγ)
tan πν

2

)
J
−γ+ν/2+r,γ+ν/2+k
m (τ)(1− τ)−γ+ν/2+r(1 + τ)γ+ν/2+k

|t− τ |ν dτ

=
π(−1)r+k+1 sinπ(γ − ν/2)2r+k+1Γ(m + ν)

Γ(m + 1)Γ(ν) sin πν
2 cos(γπ) sin π(−γ + ν/2− k)

J
γ+ν/2−r−1,−γ+ν/2−k−1
m+r+k+1 (t), (A.1)

m + r + k + 1 ≥ 0, m = 1, 2, · · · .

By using the above theorem, we can derive the following result.

Lemma A.1. For any real 0 < α < 1, 0 < t < T , and any positive integer m, we have

0D
α
t J−α,0

m (
2t

T
− 1) =

Γ(m + 1)t−α

Γ(m− α + 1)
J0,−α

m (
2t

T
− 1), (A.2)

tD
α
T J0,−α

m (
2t

T
− 1) =

Γ(m + 1)(T − t)−α

Γ(m− α + 1)
J−α,0

m (
2t

T
− 1). (A.3)

Proof. The first formula (A.2) with T = 1 has been proved in [24], Theorem 6.10. This formula
for general T can be obtained by changing the variable from interval [0, 1] to [0, T ]. To prove the
second formula (A.3), we use (A.1) with γ = −ν/2,

∫ 1

t

Jν+r,k
m (τ)(1− τ)ν+r(1 + τ)k

(τ − t)ν
dτ =

π(−1)r+k+12r+k+1Γ(m + ν)
Γ(m + 1)Γ(ν) sin π(ν − k)

J−r−1,ν−k−1
m+r+k+1 (t). (A.4)

Note that the condition of the Theorem A.1 is now reduced to 0 < ν < 1, r > −1 − ν, k > −1 .
By taking r = −1 and k = 0 in (A.4), we obtain

∫ 1

t

Jν−1,0
m (τ)(1− τ)ν−1

(τ − t)ν
dτ =

πΓ(m + ν)
Γ(m + 1)Γ(ν) sin(πν)

J0,ν−1
m (t).

Then applying the identity π
sin(πν) = Γ(ν)Γ(1− ν) to the above equality gives

∫ 1

t

Jν−1,0
m (τ)(1− τ)ν−1

(τ − t)ν
dτ =

Γ(m + ν)Γ(1− ν)
Γ(m + 1)

J0,ν−1
m (t). (A.5)

By changing the variables τ → 2τ
T − 1, t → 2t

T − 1, and let α = 1− ν in (A.5), we have

1
Γ(α)

∫ T

t

J−α,0
m (2τ

T − 1)(T − τ)−α

(τ − t)1−α
dτ =

Γ(m + 1− α)
Γ(m + 1)

J0,−α
m (

2t

T
− 1). (A.6)

Now we define, as in [24], the right Riemann-Liouville fractional integral of order α of a function
f as follows:

tD
−α
T f(t) =

1
Γ(α)

∫ T

t

f(τ)
(τ − t)1−α

dτ.

Then, (A.6) becomes

tD
−α
T

(
J−α,0

m (
2t

T
− 1)(T − t)−α

)
=

Γ(m + 1− α)
Γ(m + 1)

J0,−α
m (

2t

T
− 1). (A.7)
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Finally, by applying the fractional differentiation operator tD
α
T to both sides of (A.7) and using

the following property (see, e.g., [24])

tD
α
T tD

−α
T f(t) = f(t), ∀f such that LHS makes sense,

we obtain (A.3). The proof is complete.

By virtue of Lemma A.1, we have

0D
α/2
t φj(t) = 0D

α/2
t

(
J
−α/2,0
j (

2t

T
− 1) + J

−α/2,0
j−1 (

2t

T
− 1)

)

= 0D
α/2
t J

−α/2,0
j (

2t

T
− 1) + 0D

α/2
t J

−α/2,0
j−1 (

2t

T
− 1)

=
(

Γ(j + 1)
Γ(j + 1− α/2)

J
0,−α/2
j (

2t

T
− 1) +

Γ(j)
Γ(j − α/2)

J
0,−α/2
j−1 (

2t

T
− 1)

)
t−α/2.

tD
α/2
T ψn(t)

= tD
α/2
T

(
n

n− α/2
J0,−α/2

n (
2t

T
− 1) + J

0,−α/2
n−1 (

2t

T
− 1)

)

=
n

n− α/2 tD
α/2
T J0,−α/2

n (
2t

T
− 1) + tD

α/2
T J

0,−α/2
n−1 (

2t

T
− 1)

=
(

Γ(n + 1)n
Γ(n + 1− α/2)(n− α/2)

J−α/2,0
n (

2t

T
− 1) +

Γ(n)
Γ(n− α/2)

J
−α/2,0
n−1 (

2t

T
− 1)

)
(T − t)−α/2.

Let φ̃j(t) denotes

φ̃j(t) =
Γ(j + 1)

Γ(j + 1− α/2)
J

0,−α/2
j (

2t

T
− 1) +

Γ(j)
Γ(j − α/2)

J
0,−α/2
j−1 (

2t

T
− 1),

and ψ̃n(t) stands for

ψ̃n(t) =
Γ(n + 1)n

Γ(n + 1− α/2)(n− α/2)
J−α/2,0

n (
2t

T
− 1) +

Γ(n)
Γ(n− α/2)

J
−α/2,0
n−1 (

2t

T
− 1).

Then both φ̃j(t) and ψ̃n(t) are polynomials, and

∫ T

0
0∂

α
2
t φj(t) t∂

α
2
T ψn(t)dt =

∫ T

0
φ̃j(t)ψ̃n(t)t−α/2(T − t)−α/2dt. (A.8)

We are now led to compute the integral in the right hand side of (A.8). We denote by Jα,β
N+1(τ)

the Jacobi polynomial of degree N + 1 with respect to weight wα,β(τ) = (1 − τ)α(1 + τ)β. Let
ξα,β
k be the points of the Gauss-Lobatto-Jacobi quadrature formula, defined by:

ξα,β
0 = −1, ξα,β

N+1 = 1,
d

dτ
Jα,β

N+1(ξ
α,β
k ) = 0, k = 1, · · · , N,

arranged by increasing order: ξα,β
0 < ξα,β

1 < · · · < ξα,β
N+1. The associated weights of the Gauss-

Lobatto-Jacobi quadrature formula are denoted by ρα,β
k , 0 ≤ k ≤ N + 1.
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We define the set of Gauss-Lobatto-Jacobi quadrature points tk in the time interval I = [0, T ]
as follows

tk =
(ξ−α/2,−α/2

k + 1)T
2

, k = 0, 1, · · · , N + 1.

The corresponding weights are then

wk = (
2
T

)α−1ρ
−α/2,−α/2
k , k = 0, 1, · · · , N + 1.

It is well known that the numerical quadrature

∫ T

0
u(t)v(t)t−α/2(T − t)−α/2dt '

N+1∑

k=0

u(tk)v(tk)wk

is exact for all functions u, v such that uv ∈ P2N+1(I). As a result, it holds

∫ T

0
φ̃j(t)ψ̃n(t)t−α/2(T − t)−α/2dt =

N+1∑

k=1

φ̃j(tk)ψ̃n(tk)wk, j, n = 1, 2, · · · , N

since φ̃jψ̃n ∈ P2N (I) for all j, n = 1, 2, · · · , N .

Now we turn to calculate
∫ T
0 φj(t) ψn(t)dt. We define the quadrature points t̃k and corre-

sponding weights w̃k as follows:

t̃k =
(ξ0,0

k + 1)T
2

, w̃k =
T

2
ρ0,0

k , k = 0, 1, · · · , N + 1.

Then
∫ T
0 φj(t) ψn(t)dt can be exactly evaluated by the numerical quadrature:

∫ T

0
φj(t) ψn(t)dt =

N+1∑

k=1

φj(t̃k)ψn(t̃k)w̃k, j, n = 1, 2, · · · , N.

Finally, the forcing term
∫ T
0 f(xm, t)ψn(t)dt is approximated by the same quadrature as above.
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